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Non-Hermitian Hamiltonian of 
the system

This is the non-Hermitian Hamiltonian governs the system. A1 and A2 represent 
the photon-number-normalized amplitudes of the CCW and CW components of 
the pump modes, respectively, ω0 is the unpumped frequency of the Stokes 
cavity mode and γ is the cavity damping rate. gj = g0/[1 + (2iΔΩj/  for j = 1, 2, 
is the Brillouin gain factor, where g0 is the gain coefficient, Γ is the gain 
bandwidth and  ΔΩj = ωpj − ωs − is the frequency mismatch, ωpj is the 
pump photon frequency with ωs the Stokes lasing frequency (an eigenfrequency 
of Hamiltonian above).

The real part of the Brillouin gain factor leads to amplification of the Stokes 
mode, whereas the imaginary part is responsible for dispersion and consequently 
mode pulling. κ is the dissipative coupling rate between the two SBL modes.



In a standing-wave mode basis, the optical loss induced by the fiber taper or any 
other spatially localized absorption or dissipative scattering element will be different 
for each mode and can be captured by the following contribution to the Hamiltonian:

Changing to a traveling wave basis (CW and CCW) by using the relation
gives the following Hamiltonian in the new basis,

where common = (1 + 2)=2  and   = (2 1)=    . The first term is the common 
loss (out-coupling loss of the taper) while the second term is the dissipative 
backscattering. Most of the dissipative backscattering originates from taper scattering. 
Specifically, changes in the contact position of the taper on the resonator are 
observed to vary κ.



The steady-state lasing condition requires the power loss rate γ to be balanced
by the Brillouin gain, which leads to the clamping condition of the pump powers,

.
As a result, above the lasing threshold Hamiltonian is simplified to the following form:

With the introduction of κ, the lasing system exhibits a frequency locking–unlocking 
transition when varying the pump detuning frequency. The locking regime is known 
to create a sensing dead band for rotations in ring laser gyroscopes. In the 
frequency-unlocked regime, the two lasing modes have distinct angular frequencies 
ωs+ and ωs−, which are the eigenvalues of the Hamiltonian.

where ωr = {ω0 + [γ(ωp1 −Ωphonon)/ Γ ]}/[1 + γ/ Γ ] , is the pump detuning 
frequency and  Δωc = 2 is the critical pump frequency detuning at which the 
system state is at an EP.



Langevin Formalism
For readability, all cw subscript will be replaced by 1 and all ccw subscript will be 
replaced by 2. The modes are pumped at angular frequencies !P;1  and    !P;. The 
loss rate of phonon modes is denoted as Γ (also known as the gain bandwidth) and 
the loss rate of the SBL modes are assumed equal and denoted as γ. In addition, 
coupling between the two SBL modes is separated as a dissipative part and
conservative part, denoted as κ and χ, respectively. These rates will be assumed to 
satisfy Γ ≫γ≫ κ to simplify the calculations, which is a posteriori verified in our 
system. In the following analysis, we will treat the SBL modes and phonon modes 
quantum mechanically and define a1 (a2) and   1 (b2) as the lowering operators of 
the cw (ccw) components of the SBL and phonon modes, respectively. Meanwhile, 
pump modes are treated as a noise-free classical fields A1 and A2 (photon-number-
normalized amplitudes).



Using these definitions, the full equations of motion for the SBL and phonon modes 
read

where 𝑔𝑎𝑏 is the single-particle Brillouin coupling coefficient. F(t) and f(t) are the 
fluctuation operators.



Two SBLs
For two pairs of photon and phonon modes with coupling on the optical modes. We 
write the equations of motion for the SBL modes:

No additional coupling occurs between the other components of the SBL eigenstates
and    . Thus we can approximate the optical mode      with the composite SBL 

mode    . The equations now become

where we have defined mode-pulled coupling rates  = =( + ) and                  
.

We can write j(t) =pNj exp( ij) wit with j = 1, 2, and ignore amplitude fluctuations 
(Amplitude fluctuations have been ignored on account of quenching of these 
fluctuations above laser threshold). 



The equations of motion for the phases are,

where we have defined the amplitude ratio  q =p N2=N1 for simplicity. As we 
measure the beatnote frequency, it is convenient to define   2 1      from which 
we obtain,

Where the combined noise term and its correlation are given by



Obtain the linewidth from 
Adler equation
We define                  and rewrite

The solution to the Adler equation is periodic when no noise is present. To see this 
explicitly we use a linear fractional transform:

The linewidth can be found from the spectral density, which is given by the Fourier 
transform of the correlation function: 



By applying the Fokker-Planck equation and calculation, the linewidth of the 
fundamental frequency can be found through 

with


