CAVITY CARVING OF ATOMIC BELL STATES

Junseok Han

Journal Club 2017/10/10
contents

- Lab info
- Introduction
- Theory
- Experimental set up
- Result
- Conclusion
Cavity Carving of Atomic Bell States

Stephan Welte,* Bastian Hacker, Severin Daiss, Stephan Ritter, and Gerhard Rempe
Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany
(Received 27 January 2017; published 26 May 2017)

- Prof. Gerhard Rempe
- Honorary Professor at the Technical University of Munich
- Director at Max Planck Institute of Quantum Optics

Research Interest

- Cavity Quantum Electrodynamics
- Quantum Information Processing
- Bose Einstein Condensation (BEC)
- etc.
Introduction

- Bell states: maximally entangled states

$$\Psi^+ = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)$$, $$\Psi^- = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$
$$\Phi^+ = \frac{1}{\sqrt{2}} (|\uparrow\uparrow\rangle + |\downarrow\downarrow\rangle)$$, $$\Phi^- = \frac{1}{\sqrt{2}} (|\uparrow\uparrow\rangle - |\downarrow\downarrow\rangle)$$

- Advantages
 - Fast protocol, time limited only by the duration of the atomic state rotation and the light pulses
 - Focusing and pointing errors of the laser suppressed by the technique
 - No dependence on atomic distance
$|R\rangle$: right circular polarization couples $|\uparrow\rangle$ and $|e\rangle$ atomic state
$|R\rangle|\uparrow\rangle \leftrightarrow |0\rangle|e\rangle$

$|L\rangle$: left circular polarization uncoupled reference with the corresponding atomic transition far off resonant

Linear Polarizations
$|A\rangle = (|R\rangle - i|L\rangle)/\sqrt{2}$
$|D\rangle = (|R\rangle + i|L\rangle)/\sqrt{2}$
General Scheme of Carving

Coherent light pulse
\[|A\rangle = (|R\rangle - i|L\rangle)/\sqrt{2} \]

\(|\uparrow\rangle\) interact with \(|A\rangle\) (\(|L\rangle\) especially)
reflect \(|D\rangle = (|R\rangle + i|L\rangle)/\sqrt{2}\)
with nonzero probability

\(|\downarrow\rangle\) no interaction whatsoever

even one \(|D\rangle\) photon detected
\(|\downarrow\downarrow\rangle\) state carved off!

new superposition

Figure: Husimi Q distribution of states
Why So Efficient?

- Any light that is not matched to the geometric cavity mode will remain in its original polarization mode & create no heralding signal in the detector.
 → Enhances entangling fidelity significantly and makes the scheme robust against wave front imperfections of the incident light.
Carving Schemes

- **Double carving**
 - Rotate and carve twice to make precise bell states.
 - All four of them can be produced

- **Single carving**
 - Rotate a little bit and carve once to make bell states approximately
 - $|\Psi^-\rangle$ cannot be produced

(a) Double-carving scheme
(b) Single-carving scheme
Carving Schemes

- Double-carving scheme

\[
\begin{align*}
 |\downarrow\downarrow\rangle & \xrightarrow{R_y^{\pi/2}} \frac{1}{2} (|\uparrow\uparrow\rangle - |\downarrow\uparrow\rangle - |\downarrow\downarrow\rangle + |\uparrow\downarrow\rangle) \\
 |A\rangle & \xrightarrow{1/\sqrt{3}} (|\uparrow\uparrow\rangle - |\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \\
 |\Psi^+\rangle & = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)
\end{align*}
\]

with 53% probability (2/3 for ideal cavity)

with 61% probability (3/4 for ideal cavity)

\[
\begin{align*}
 R_y^{\pi}/2 & \rightarrow |\Phi^-\rangle = \frac{1}{\sqrt{2}} (|\uparrow\uparrow\rangle - |\downarrow\downarrow\rangle) \\
 |\Phi^+\rangle & = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)
\end{align*}
\]

- Single-carving scheme

\[
\begin{align*}
 |\downarrow\downarrow\rangle & \xrightarrow{R_y^\alpha} \sin^2 \frac{\alpha}{2} |\uparrow\uparrow\rangle - \frac{1}{2} \sin\alpha (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle) + \cos^2 \frac{\alpha}{2} |\downarrow\downarrow\rangle \\
 |A\rangle & \xrightarrow{\sin^2 \frac{\alpha}{2} |\uparrow\uparrow\rangle - \frac{1}{2} \sin\alpha (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle) \approx |\Psi^+\rangle}
\end{align*}
\]

\[
\begin{align*}
 R_x^{\pi/2} & \rightarrow |\Phi^-\rangle = \frac{1}{\sqrt{2}} (|\uparrow\uparrow\rangle - |\downarrow\downarrow\rangle) \\
 |\Phi^+\rangle & = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)
\end{align*}
\]
Experimental Set Up
Experimental Set Up

- **Cavity environment**
 - Length 486μm mode waist 30μm
 - Use asymmetric cavity, transmission $4.0 \times 10^{-6}, 9.2 \times 10^{-5}$ each
 - Coupling factors: $(g, \kappa, \kappa_{\text{out}}, \gamma) = 2\pi(7.8, 2.5, 2.3, 3.0)$
 - κ: total decay rate, κ_{out}: outcoupling cavity mirror decay rate

- **Atom: rubidium 87**
 - Distance: 2 μm~12 μm
 - Trapped in 3D blue-detuned optical lattice in cavity mode 780 nm
 - $|\uparrow\rangle = |F = 2, m_F = 2\rangle, |\downarrow\rangle = |F = 1, m_F = 0\rangle$

Figure 2: $^{87}\text{Rb} D_2$ transition hyperfine structure, with frequency splittings between the hyperfine energy levels. The excited-state values are taken from [6], and the ground-state values are from [16]. The approximate Landé g_F-factors for each level are also given, with the corresponding Zeeman splittings between adjacent magnetic sublevels.
Experimental Set Up

■ State detection
 - Use fluorescene, the protocol consists of two successive measurements on two atoms with an interleaved \(\pi \)-pulse -> able to distinguish between \(|↑↑\rangle, |↓↓\rangle, |↑↓\rangle/|↓↑\rangle\)

■ Rotation
 - Use Raman laser with beam waist 35μm to make initial state to coherent spin state

\[
|θ, φ\rangle = \bigotimes_{j=1}^{2} \left[\cos \left(\frac{θ}{2} \right) |↑\rangle_j - e^{iφ} \sin \left(\frac{θ}{2} \right) |↓\rangle_j \right]
\]

where \(θ\) and \(φ\) can be adjusted by Raman laser power, duration, detuning, phase.
Experimental Set Up

- **Double carving scheme**
 - Use pulse with average photon number = 0.33
 - Distinguish states with parity oscillation
 - Rotate state with $\pi/2$ and φ in Bloch sphere and calculate parity $\Pi(\varphi) = P_{\uparrow\uparrow} + P_{\downarrow\downarrow} - (P_{\uparrow\downarrow} + P_{\downarrow\uparrow})$ and investigate its dependence on φ
 - Perform experiment scanning φ from 0 to 2π in 750 times and measure probabilities
 - Experiment repeated at a rate of 1kHz with 180 μs being used for optical pumping and 740 μs for cooling between each experiment

- **Single carving scheme**
 - Measure fidelity through manipulating α from 0 to 0.63π
 - Average photon number of the pulse is 1.2
Result

- Distinguishing states through Parity Oscillation

Husimi Q distribution \(= \left(\frac{3}{4\pi} \langle \theta, \phi | \rho | \theta, \phi \rangle\right)\) of \(|\Phi^-\rangle\) state in theoretical and experimental data.
Result

- Double-carving scheme
 - Measure fidelity $F = \langle \psi | \rho | \psi \rangle$, ($|\psi\rangle$: ideal state) with previously measured probabilities
 - Lifetime measured via measuring the fidelities after various waiting intervals

| $|\psi\rangle$ | $P_{\uparrow\uparrow}$ | $P_{\downarrow\downarrow}$ | $P_{\uparrow\downarrow} + P_{\downarrow\uparrow}$ | F | $\tau (\mu s)$ |
|----------------|-----------------|-----------------|-----------------|-------------|---------------|
| $|\Psi^-\rangle$ | 06(2)% | 09(2)% | 84(2)% | 83.4(1.4)% | 204(26) |
| $|\Psi^+\rangle$ | 02(2)% | 15(5)% | 83(5)% | 81.9(2.8)% | 134(17) |
| $|\Phi^-\rangle$ | 40(3)% | 54(3)% | 06(1)% | 89.9(1.7)% | 90(19) |
| $|\Phi^+\rangle$ | 44(5)% | 43(5)% | 13(4)% | 82.4(3.1)% | ... |
Result

- Single-carving scheme
Conclusion

- Carving is a fast, efficient method to create an entangled state
- Experiment showed that carving is reasonable method to gain high enough fidelity
Q&A