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Introduction

T.Byrnes et al., NRPHY3143

Exciton-Polariton basic structure

• Excitons exist within quantum well layers.

• Excitons are strongly coupled with photons.

• Sandwiched by 2 DBRs. (distributed Bragg 
reflectors)

• Can create chaotic exciton-polariton billiard.



Exciton-Polariton BEC

• Creating the chaotic billiard by exciton-polariton BEC 
using optical pump.

• Hybridization of the cavity photon and exciton modes.

• Optical pump creates an incoherent reservoir of excited 
exciton-like polaritons.(like a band gap)

• Continuously pumped condensate decays coherent 
photons.

• Coherent photons escape the cavity.

• So photoluminescence in BEC is to check the state of 
condensate.

T.Byrnes et al., NRPHY3143



Experimental Procedure



• DMD mirror reflect the spatial Siani billiard pattern.

• Optical pump creates an inhomogeneous distribution of 
excitons in the plane of quantum well.

• Varying two parameters (R,d) but the area remains same.

Tosi, G. et al., NRPHYS2182

• Make cavity with optical pumping.

T.Byrnes et al., NRPHY3143

• Strong coupling between the excitons and 
photons make BEC. (orange cloud)

• Exciton-Quantum well.
Polariton-wall.





Generation of Exceptional points
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• Gross-Pitaevskii equation

Modelling of the billiard

• Describes full dyanamics of the exciton-polariton condensation.

• Obtain full structure of spatial modes of the exciton-polariton
condensate.
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• For any two non-Hermitian modes of the billiard potential near the degeneracy 
point

• Anticipate that linear approximation is strongly valid, apply linear Schrodinger 
equation.

• Coupled-mode model
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• Separate the temporal and spatial distribution.

• Spatial overlap q is an off-diagonal term of Hamiltonian 
and  is complex parts of the eigenenergies
corresponding to the gain/loss rate.



Varying R parameter

Results

• 11 modes of billiard.

• With growing R, numerous degeneracies and quasi-
degeneracies suddenly increase.

• Significant criteria of transition of regular to quantum chaos.
(this is soft wall case -> mixed)

• Crossings and anti-crossings of real energy levels are observed.

• However, in order to see the transition between crossing and 
anti-crossing, we need another parameter->d



• Two billiards with varying d.

• Left pair: for thick wall, anti-crossing for 
real eigenenergies.
Crossing for imaginary eigenenergies.

• Right pair: for thin wall, anti-crossing for 
imaginary eigenenergies.
Crossing for real eigenenergies.

So transition between crossing and anti-crossing is d dependent.
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Linear complex Hamiltonian

• Linearly approximated Hamiltonian

• The behavior of two billiard modes in the vicinity of a degeneracy
->simple two-level system with effective coupling.
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• At EP, the eigenvalues coalesce.

• The EP can be encircled in the parameter 
domain.

• Two parameters approximately arranged (R,d).

qE~iδ EP ±=



Mode Switching

• Left features describe the transmutation of spatial distributions 
of selected eigenmode along the closed loop.

• Increasing and decreasing R, decreasing and increasing d. First 
cyle is over
-> ℎ  ℎ (topological Berry phase)

• Begin 2nd cycle, repeat above procedure.
-> ℎ  ℎ again.

• As a result, when the contour is traversed twice, return to the 
original mode.

• The experimental and calculated density and phase profiles are 
matches very well



Q&A


